Ну тогда объясните мне, на кой хрен вообще в толстых комплектах 3 струна обычно и идёт именно в оплётке? Производители так угарают что ли над гитаристами, или что? И зачем вообще нужны струны в оплётке, если всё в порядке с обычными лысыми? Делали бы все шесть канатами стальными. А нужны они именно затем, что ниже определённого момента струны без оплётки уже не звучат как положено, вот и всё, и я веду речь не столько о стабильности строя, сколько именно о звучании. Особенно паршиво звучат супер-толстые комплекты, в которых попадается 3 без оплётки, там вообще мрак полный.
Вы реально не слышите, как 3 струна без оплётки по звуку выбивается из общего характера в пониженных строях? Тогда это разговор слепого с глухим, остановимся на том, что это дело вкуса.
Да и вообще, стандартный равномерно темперированный строй, который используется сейчас повсеместно, иногда сам по себе (а точнее - by design) лажает так, что у некоторых людей начинает идти кровь из ушей. А другие об этом даже не подозревают! И наверняка тем, кто это слышит, рассказывают, что на самом деле всё в порядке:
ЦИТАТА
The western musical scale is made of 12 notes per octave that are equally spaced apart. This allows you to play in any key without having to stop and adjust your tuning for each key (this will become clearer in a moment). Each of the 12 notes is about 5.946% higher in frequency than the one below it. If you take A 440, and multiply it by exactly 1.05946, you get the frequency of A sharp, which is 466.162 Hz. Multiply that again by 1.05946 eleven more times, and you reach 880 Hz, the A an octave higher. In the studio, where sometimes you have to change tape speeds for tuning purposes, you can just remember it as "6% speed change equals one half-step" (or one fret on the guitar). Six percent is ballpark... then finetune by ear. (Also... each of the 12 notes in an octave is divided into 100 tiny intervals called "cents". So... one "cent" is about .06%. An octave is 1200 cents. Hey, I didn't invent this stuff...)
So far so good? Get out your old TI calculator and try multiplying anything by 1.05946, 12 times, and watch the number end up doubled. It happens that 1.05946 is the "twelfth root of two". This evil number, which we are stuck with, has caused tuning nightmares for entire civilizations.
The G (and B) string drives people crazy on the guitar. They tune it, then play a C chord or A minor chord, but the G string sounds wrong. Fuzz and distortion makes the wrongness even more apparent. So they tune the G string by ear so that chord is in tune... and then all the other chords they play sound wrong. Way down there at the first fret, all your intonation acrobatics (which mostly affect the other end of the string!) will be of little use, so what do you do? Sigh wearily... and look for another guitar, which might fix the problem... sorta.
The explanation won't make you happy. In the "first position," meaning for chord shapes that are mostly on the first couple frets on the guitar, the G string is often used for the upper part of a musical interval called a "third," either major or minor third. (This musical term is not to be confused with "third harmonics;" it's a totally different thing.) In an ideal world, a "major third" is two notes (a "diad") whose frequencies are in a ratio of 5 to 4, or 1.25, while a "minor third" is in a ratio of 6 to 5, or 1.2. If those ratios are true, these diads (note pairs) sound wonderfully in tune and harmonious.
Here's where it gets hairy. In our 12-tone Western scale, where all the notes are equally spaced, no pair of them are exactly in a 1.2 or 1.25 ratio. If you pull out your calculator and multiply 1.05946 by itself a few times, you'll land on 1.189 and, next, 1.2599! The first one is actually 15 cents flat from where your ears will want a minor third to be, and the second is 14 cents sharp from where a major third should be! So if you tune a chord that includes a major third "by ear" until it sounds perfect, that same chord with a minor third substituted in it will be 29 cents out of tune... almost a third of a half-step. (Cue: wailing and gnashing of teeth.)
For comparison, a "fourth," the frequency span from A down to E, should be in a ratio of 4 to 3, or 1.3333... and in our Western scale, it lands on 1.3348. Damn close... only 2 cents sharp. A "fifth" (E to B, the ultimate punk rock interval; one string over, 2 frets up) should be 3 to 2, or 1.5000, but it lands on 1.4983 in our scale... 2 cents flat. Fourths and fifths are definitely close enough for rock and roll.
But... pile on a bunch of fuzz/distortion (which nakedly reveals tuning problems) and place those "third" notes right on the pesky first fret of the guitar, and you can have the ultimate homicidal-suicidal tuning nightmare. There's not much you can do. When a musician with a song including lots of first position complex chords notices this problem, he (and you) can go nuts trying to get his guitar in tune. There are actually chord progressions that simply cannot be played completely in tune on some guitars, period; you have to tune by ear for part of the chord progression, record it, then retune for the other part of the chord progression, and punch all those parts in... with very fast fingers. Or get another guitar... and hope!
http://www.endino.com/archive/tuningnightmares.html
Именно поэтому выпускают подобные гитары:

Стив Вай с такой гитарой:
https://youtu.be/uehDWQNActA?t=93Замечаете, лады на какой струне изогнуты сильнее всего? Некоторые люди даже рекомендуют для компенсации сего настраивать g-струну (и даже некоторые другие) немного ниже (на несколько центов), чем это нужно. Например:
https://youtu.be/8tfxy_zs0Mo?t=1249https://youtu.be/8tfxy_zs0Mo?t=1782https://www.youtube.com/watch?v=V2xnXArjPtsВ общем, базовый экскурс в вопрос я провёл, а дальше если интересно, гуглите по запросу "just intonation"